
PUM_DCF_processing-application-enviroment-execution-implementation.pdf/PUM_DCF_processing-application-enviroment-execution-implementation_v1.0.0.pdf

Processing application environment,
execution and implementation

SOCIB-Data Center Facility

Document type: Product user manual

Date: 2016-01-01

Description: Processing application

Authors: ksebastian

Supervision: ctroupin

Involved Personnel: ksebastian, ctroupin, jpbeltran, cmuñoz, mrujula

1/13

DOCUMENT VERIFICATION LIST

Date: Checked by (name) SOCIB division Ref.

 2016-01-01 K. Sebastian SOS

 DOCUMENT DISTRIBUTION LIST

Date: Distribution to:

2016-01-01 DCF

CHANGE RECORD

Date Description Author Checked by

1.0.0 16/03/2016 Added missing dependencies on the
“Dependencies and Plugins” chapter

mrujula jfernandez

2/13

Índice de contenido

Introduction 5

Environment configuration 5
Install Java 5
Source code 5
Import the projects 6
Dependencies and plugins 6

Library and project dependencies 6
Plugins 8

Datanucleus 8
EclEmma Java Code Coverage 8
Eclipse-pmd 8

Sphinx environment 8

Execution 8
Local environment (develop) 8

Run the unit tests 9
Production 9

Deploy 10
Raw input, archive and archive daily folders 10
Check folder permissions 10

Caches 11
Datanucleus notes 11
Log files 11

Socib data processing 11

Socib processing library 12
Implement a new parsing function 12
Implement a new deriving function 12
Implement a new qc test 12
Related documents 12

Sea level issue 12
Quality control 12
Rename variable names 12

3/13

Socib datanucleus library 12

Socib definitions 12
Implement a new service definition 13

Socib Meteo ocean toolbox 13

Socib NetCDF to kml 13

4/13

Introduction
The aim of this document is describe and configure the environment to run the processing
application in development mode, in order to test new platforms and implementations, and
create the runnable .jar to to run in the production environment.

Since the processing application consists of 6 projects, a description and some
implementations are included of each project.

Environment configuration
The Eclipse for Java EE IDE is recommended, because all configuration, development and
runnable jar are done in Eclipse.

Install Java
sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java6-installer

Source code
For each project the related repository is:

Socib data processing Socib processing library Socib datanucleus library

processing processing-library datanucleus-library

Socib definitions Socib Meteo Ocean
toolbox

Socib NetCDF to Kml

socib-definitions meteo-ocean-toolbox netcdfToKml

Notifications System

notifications_system

Clone each project inside your workspace directory and import it to Eclipse ‘Eclipse Projects
into Workspace.

5/13

Import the projects
Add the Socib Data Discovery sources as an Eclipse project. Go to “File” -> “New” -> “Java
Project”. The project name must match the cloned one and the “Project Location” must point
to the parent folder of the cloned one. Finally click finish and it should be created.

Dependencies and plugins

Library and project dependencies
The libraries are located in /home/gituser/libraries and the user libraries configuration to be
imported to Eclipse as well.

/home/gituser/libraries/socib_java_libraries.userlibraries

Firstly, import to Eclipse that file in the ‘User libraries’ preferences to begin with the
dependency configuration. Next, go to the ‘Java Build path’ of each project and add the
following system and ‘User Libraries’:

Socib data processing Socib processing library Socib datanucleus library

COMMONS-COLLECTIONS
COMMONS-LANG
EXP4J
GSON
KML
LOG4J
NETCDF
SUNMARCHALLER
JAVA6

CLONING
COMMONS-COLLECTIONS
COMMONS-IO
COMMONS-LANG
COMMONS-MATH
CONCURRENTUNIT-V0.4.2
CPSUITE
EXP4J
GOOGLE-GUAVA
GSON
JODA-TIME
JUNIT4
LOG4J
MATH ???
NETCDF
OBJENESIS
XOM
JAVA6

COMMONS-CODEC
COMMONS-COLLECTIONS
COMMONS-LANG
CONNECTION-POOLING
DATANUCLEUS-V4.1.1
EHCACHE
GOOGLE-GUAVA ???
JODA-TIME
JDO-API-3.1 ???
LOG4J
MEMCACHED
POSTGRES
JAVA6

Socib definitions Socib Meteo Ocean
toolbox

Socib NetCDF to Kml (the
lib folder contains all)

6/13

JAVA6 LOG4J
EXP4J
JAVA6

LOG4J
KML
NETCDF
COMMONS-LANG
SUNMARCHALLER
JAVA6

Notifications System

ASANA
DATANUCLEUS-V4.1.1
GOOGLE-GUAVA
GOOGLE-CLIENT-HTTP
GOOGLE-HTTP-CLIENT-GSON
GOOGLE-OAUTH-CLIENT
GSON
JavaMail
JUnit 4
LOG4J
JAVA6

Finally, add the project dependency in the ‘Java Build Path’:

Socib data processing Socib processing library Socib datanucleus library

SocibDatanucleusLibrary
SocibProcessingLibrary
SocibDefinitions
SocibNetcdfToKml
SocibNotificationsSystem

SocibDatanucleusLibrary
SocibMeteoOceanToolbox
SocibDefinitions
SocibNotificationsSystem

SocibNotificationsSystem
SocibDefinitions

Socib notifications system

SocibDatanucleusLibrary
SocibProcessingLibrary
SocibDefinitions

Furthermore, the project facet java in the “Project facets” (only if it is active) property must
match with the Java version added to the build path and all projects must have the same
Java version.

IMPORTANT: The NetCDF library in processing project must be the first one in the “Order

7/13

and Export” tab (Project “Properties” -> “Java Build Path” Menu). If not, then the exception
“Exception in thread "main" java.lang.NoSuchMethodError:
ucar.nc2.Attribute.getShortName()Ljava/lang/String;” will be throw.

Plugins

Datanucleus
The Datanucleus Eclipse Plugin. From the web page: Development of a
DataNucleus-enabled project using Eclipse would benefit from the DataNucleus Eclipse
plugin providing enhancement of classes and the opportunity to create the database
schema. You can download this plugin by adding the DataNucleus "Eclipse Update" site of
http://www.datanucleus.org/downloads/eclipse-update to your Eclipse configuration.

You don’t have to configure anything, because the datanuclues configuration is performed
via the datanucleus.properties file, located in the SocibDatanucleus library. You only have to
add DataNucleus support to the SocibDatanucleusLibrary (right click on the project ->
DataNucleus -> Add Datanucleus support).

EclEmma Java Code Coverage
EclEmma is a free Java code coverage tool for Eclipse, available under the Eclipse Public
License. It brings code coverage analysis directly into the Eclipse workbench.

http://eclemma.org/

Eclipse-pmd
PMD is a source code analyzer. It finds common programming flaws like unused variables,
empty catch blocks, unnecessary object creation, and so forth. It supports Java, JavaScript,
PLSQL, Apache Velocity, XML, XSL.

http://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/

Sphinx environment
See the javasphinx section in the master document.

Execution

Local environment (develop)
The main class is the ProcessingManager.java located in the es.socib package of the
Socib Data Processing project. This class implements the main method that process the
active platforms and generate the related products (NetCDF files, kml files, ...).

8/13

http://www.datanucleus.org/downloads/eclipse-update

http://www.eclipse.org/

http://eclemma.org/license.html

http://eclemma.org/license.html

http://eclemma.org/

https://docs.google.com/document/d/1ZqmqvCbi82Raa_fv1bx6Q5oCf4L0jAwWDCaBnWb2BUw

1. First of all check the properties the processing.properties file located in the Socib
Processing library project. It must be in developing mode (developing = true) and
the developing paths set to your local paths (see the ProcPropertiesConf.java in
the Socib Processing library project for an extended explanation of each property). In
develop mode, the processing doesn’t archive the input data and set the level of the
processing logger to INFO.

2. Secondly, select the instruments and deployments that you want to process. The

Socib Data Processing should process all active platforms with input data. You may
want to process a subset of instruments and deployments. The
DeploymentService.java located in the package
es.socib.database.service.DeploymentService of the Socib Datanucleus Library
implements the function getActiveDeployments(). You can modify the behaviour
carefully to retrieve the desired instruments and deployments. See also the
constructCondition() function comment to know the filtering options.

3. Finally, you can run via Eclipse “Run As” the ProcessingManager.java or the main

method as a “Java Application”. The Socib Data Processing will process the input
data and generate the products, according to the current configuration.

Run the unit tests
The tests in the Socib Processing Library project are implemented in JUnit4 and there are
defined some suites using cpsuite to run the unitests. The cpsuite requires Java 7+, so the
suites must be run with Java 7+. Eclipse has the features to run and debug the tests adding
to the project the junit library as a dependency.

All the tests are implemented in the test folder. By default the tests run with the properties:

● ProcPropertiesConf.developing = true;
● ProcPropertiesConf.developingRtdataPath = "/home/dataprocuser/test_data";
● ProcPropertiesConf.developingOpendapPath =

"/home/dataprocuser/test_data/opendap";

It contains some tests that could be used as an example to process instrument and product
data. See the es.socib.ProcessingTestCase class for further information.

Production
The properties in the processing.properties file must have these values:

● outputBasePath = /data/current/opendap
● currentDataPath = /data/current/
● activePlatformsCacheEnable = true
● filterDataOutOfRange = true

9/13

http://junit.org/

https://github.com/takari/takari-cpsuite

● developing = false

Furthermore, the getActiveDeployments() function of the DeploymentService.java file must
retrieve all active deployments, checking that line “sqlQuery = constructCondition(instrument,
instrumentNames, depCodes);” is commented.

Deploy
To create a new jar you must do right click over the Socib Data Processing Project -> Export
-> Select the “Runnable JAR file” -> then a window with some options is prompted. Select
the SocibDataProcessing in “Launch Configuration”, the path to save the jar (empty folder!!)
and other files in “Export destination” and select the “Copy required libraries….”. Finally click
“Finish”.

Once the processing.jar file and processing_lib folder you can copy them to the
/home/dataprocuser/processing_application/vX.X.X. Before copy them, is highly
recommended to backup the previous file and lib folder, check that the processing.jar is not
running (ex: with top) and comment the crontab line that executes the processing.jar . Note
that there is a latest_version symbolic pointing to the latest folder version, because the
crontab line that executes the processing.jar points to the latest_version symbolic link.

Raw input, archive and archive daily folders
The SOCIB Processing Application will search inside this platform “Path”, for each installed
instrument, a folder with the instrument name. Inside this folder, depending on the parsing
function implementation, should be the:

● raw input: The folder where files to be processed must be stored
● raw archive daily: The folder where processed files will be move from the input

directory for some platform (usually fixed stations). Files could be removed at the end
of the each day.

● raw archive: This folder is currently used in two ways. It can be the folder where files
will be move from the input directory for some platforms (usually none fixed platform).
Or, it can be the folder where for example daily files from some fixed station will be
store. This directory can be organized, see the “Organize directory” python project for
for details (gituser@portal.socib.es:repositories/organize_directory)

If the instrument name folder does not exist, then will search these folders in the “Path”
folder.

Check folder permissions
The folder where input files are located and where input files will be archived, must have
permissions “rwx” for the “dataprocuser” user, usually the rawInput and rawArchiveDaily
directories.

10/13

Caches
VERY IMPORTANT: See the cache document

Datanucleus notes
The database has been modified over the time and will be modified in the future and
therefore the Socib Datanucleus Library. These modifications can concern to JDO mapping
or services, and if you run the Socib Processing and error related with the Datanucleus
arises and looks like this:

javax.jdo.JDOFatalUserException: Clase "es.socib.database.instrumentation.Calibration"

campo "es.socib.database.instrumentation.Calibration.sensorVariable" : definido en el

MetaData, pero este campo no existe en la clase!
at

org.datanucleus.api.jdo.NucleusJDOHelper.getJDOExceptionForNucleusException(NucleusJDOHelpe
r.java:528)

at

org.datanucleus.api.jdo.JDOPersistenceManagerFactory.freezeConfiguration(JDOPersistenceMana
gerFactory.java:781)

at

org.datanucleus.api.jdo.JDOPersistenceManagerFactory.createPersistenceManagerFactory(JDOPer
sistenceManagerFactory.java:326)

at

org.datanucleus.api.jdo.JDOPersistenceManagerFactory.getPersistenceManagerFactory(JDOPersis
tenceManagerFactory.java:195)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

It is an expected error that is easy to fix. Right click on the Socib Datanucleus Library ->
Datanuclues -> Run enhancer tool.

Log files
The Socib Data Processing project generates three main log files: the processing.log,
parsing_input_files.log and datanucleus.log. In production, the log files are located in
/home/dataprocuser/processing_application/latest_version. In develop, the logs files are
located inside the Socib Data Processing project.

The log level can be defined at the log4j.properties file, located in the src folder.

Socib data processing
See the README.md and sphinx documentation.

11/13

https://docs.google.com/document/d/1X3p6zThBWQLCIjkH5BV9s6EUjxCzonmfLYuHjDBw15M

Socib processing library
See the README.md and sphinx documentation.

Implement a new parsing function
See the NewDataManager and ModelParser documentation (source code is a plus).
Furthermore study the ModelParser implementations that are mentioned. The files are
located in the es.socib.processing.parsinginputdata.

Implement a new deriving function
See the DerivingFunctionContainer documentation and source file.

Implement a new qc test
See the QCTestContainer documentation and source file.

Related documents

Sea level issue
https://docs.google.com/document/d/11dd32a8mcSKkIGuuvbDBIpb_02j65nOThGCt6dbS91
s

Quality control
https://docs.google.com/document/d/1uRQZU1F68fV2GgjNH5h6M5LYToYo3meQR6ceSqh
Ntpw/edit

Rename variable names
https://docs.google.com/document/d/14zRxaGova1Qs0OzoeGKnBp5ejfoZgi1EyM-t9IVLam
Q

Socib datanucleus library
See the README.md and sphinx documentation.

Socib definitions
See the README.md and sphinx documentation.

12/13

https://docs.google.com/document/d/1uRQZU1F68fV2GgjNH5h6M5LYToYo3meQR6ceSqhNtpw/edit

https://docs.google.com/document/d/1uRQZU1F68fV2GgjNH5h6M5LYToYo3meQR6ceSqhNtpw/edit

Implement a new service definition

Socib Meteo ocean toolbox
See the README.md and sphinx documentation.

Socib NetCDF to kml
See the README.md and sphinx documentation.

13/13

