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Introduction

Argo hydrographic array

Monitor the evolution of the heat content of the global ocean over a wide range
of time scales

 The spatial coverage is still inhomogeneous, and some regions remain poorly
sampled (Southern Ocean, shallow waters) or not yet observed (deep ocean, ice-
covered areas)
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Objective

 Evaluate the impact of the Argo array’s geometry on the estimation of the ocean
heat content variability at global scale

Approach

 Use of an ocean/sea-ice global numerical simulation (even spatial and temporal
resolution, 3D global coverage)



I. Numerical simulation

II. Impact of  the Argo array’s geographical restrictions

Do the geographical restrictions of the Argo array affect the estimations of the 

seasonal and interannual variabilities of the global ocean heat content? 

III. Impact of the Argo array’s spatio-temporal subsampling 

Does the Argo geometry distorts the distribution of the mixed layer quantities, 
such as the Mixed Layer Heat Content?

IV. Conclusions and perspectives
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DRAKKAR global simulation

• Model configuration at global scale (DRAKKAR Group, 2007)

• NEMO code (Madec, 2008): ocean model OPA (Madec et al., 1998) + sea-ice model 
LIM2 (Fichefet and Maqueda, 1997)

• Resolution: ¼°

• Interannual atmospheric forcing from 1958 to 2009 (Brodeau et al., 2010)
- Turbulent fluxes using atmospheric surface variables from the ERA40 re-analysis
- Radiative fluxes and precipitations from satellite products  

• Archiving: 5-day means (Crosnier et al., 2001)

• Largely assessed and used for scientific studies: 
Treguier et al. (2005, 2007), Barnier et al. (2006), Penduff et al. (2007, 2010), Lique et 
al. (2009), Lombard et al. (2009), Koch-Larrouy et al. (2010), Juza (thesis, 2011)

I. A model study
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Argo hydrographic array

• Monitoring of the global ocean heat content

• Geographical limitations: 
Shallow Waters [SW] (depths < 400m)
Ice-covered regions [I] (ice concentration > 20%) 
Deep ocean [D] (depths > 2000m)

 Do the geographical restrictions of the Argo array affect the estimations of the
seasonal and interannual variabilities of the global ocean heat content?
 Toward which region(s) should be beneficial to complete the actual array to
better represent the variability of the global ocean heat content?

(Juza et al., 2011)
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Method
 Global ¼° simulation over 2000-2006
 Comparison of heat content seasonal and interannual 

variabilities of the simulated « global » and « Argo » oceans 
(phase and amplitude)

(Juza et al., 2011)
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Seasonal cycle of heat content anomalies

(Juza et al., 2011)

D

I

SW

jan       mar mai         jul sep       nov

Argo ocean

Global oceanMethod
 Global ¼° simulation over 2000-2006
 Comparison of heat content seasonal and interannual 

variabilities of the simulated « global » and « Argo » oceans 
(phase and amplitude)

II. Impact of the Argo array’s geographical restrictions

 Deducing the OHC seasonal variability from «Argo ocean» yields an overestimation



(Juza et al., 2011)

Ratio of amplitudes
Argo / Global

D

I

SW

A = Argo

jan       mar mai         jul sep       nov A     A+SW  A+D     A+I

Argo ocean

Global oceanMethod
 Global ¼° simulation over 2000-2006
 Comparison of heat content seasonal and interannual 

variabilities of the simulated « global » and « Argo » oceans 
(phase and amplitude)

Seasonal cycle of heat content anomalies

II. Impact of the Argo array’s geographical restrictions

 Deducing the OHC seasonal variability from «Argo ocean» yields an overestimation (13%)



 Deducing the OHC seasonal variability from «Argo ocean» yields an overestimation (13%)
 The most beneficial extension: complete the Argo array in the shallow waters 

at seasonal and interannual scales

(Juza et al., 2011)
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Mixed Layer Depths at global scale (m): 2008-2009 

Observations (Argo) Subsampled ¼° simulation

February

August

 Inhomogeneity of the spatio-temporal distribution of the Argo array
 Realism of simulated and observed MLD distribution and magnitude

(Juza et al., 2012) 
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(3) Sampling median bias:  
δ = median(subsampled model) – median(fully sampled model) 

δ
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Sampling median bias = median(subsampled model) – median(fully sampled model)
Bin = 30° x 30° x 1 month (2008-2009)

Assessment of the Argo array over 2008-2009

Seasonal cycle of regional sampling median biases of MLHC (J/m2)

(Juza et al., 2012) 
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 overestimation of MLD (max 100m) 

 2004-2005 vs 2006-2007 vs 2008-2009: improvement since the Argo array is mature
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Main results

 The thermal variability of the global ocean is mostly captured by the array.

 Non-observed ocean: errors induced by the geographical restrictions 
- the global OHC seasonal variability is over-estimated by 13%
- the global OHC interannual variability is under-estimated by 5% 

 Observed ocean: errors induced by the spatio-temporal dispersion of the Argo array
- MLD (max +/-100m), MLT (max +/-5°C), MLHC (+/- 5 GJ/m2).

 Subsampling and geographical restrictions of the Argo array induce errors on the 
estimations of the heat content of the global ocean:
- In deep and intermediate water formation sites
- In boundary circulations (Western/Eastern currents)
- In coastal areas
- In marginal seas

IV. Conclusions and perspectives

Objective

 Assessment of the Argo observational array with respect to simulations
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Thanks for your attention …
Questions?








