Investigating SWOT capabilities to detect meso and submesoscale eddies in the western Mediterranean

EGU, April 2017

Laura Gómez Navarro, Ananda Pascual, Evan Mason, Ronan Fablet and Baptiste Mourre

Introduction Meth./Data Results/Disc. Conclusions Future work

Surface Water Ocean Topography mission

- Wide-swath altimeter
- Launch: 2021
- Provide water elevation maps
 - Oceanography
 - Hydrology

(Lee et al., 2010; Rodríguez, 2010)

Introduction Meth./Data Results/Disc. Conclusions Future work

Satellite characteristics

- Higher spatial resolution than present day satellites:
 - Possible 15km
 wavelength in most of the Ocean
- Not very good temporal resolution
 - Time between revisits
 10 days, given its 21 day repeat cycle and swath overlap

(Fu and Morrow, 2016)

Introduction Meth./Data Results/Disc. Conclusions Future work

Satellite characteristics

- 2 orbits:
 - Fast-sampling phase: 60 days
 - → SWOT cal/val tracks in the western Mediterranean:

Nominal phase: 21-day repeat-cycle

(Ubelmann *et al*, 2015)

Motivations

Smaller structures in Med.:

First baroclinic deformation radius (km) from a numerical simulation (Copernicus Marine Service). Courtesy Angélique Melet (Mercator-Ocean)

Developed to simulate synthetic observations of SSH from SWOT

Introduction

Simulator input data: WMOP

- Western Mediterranean OPerational forecasting system (WMOP)
- Spatial resolution of ~2 km (Juza et al., 2016)
- 2009 2015 hindcast
- High resolution weather forecast forcing:
 - Temporal: 3 hrs
 - Spatial: 5 km
- → More energy: Allows to resolve mesoscale and permit submesoscale

(B. Mourre)

Introduction

- Input files: daily WMOP hindcast → for whole period (2009-2015)
- Orbit: nominal (292 passes in total) \rightarrow 14 in this region

(pass number)

- Day 2. Cycle 2 pass 15:
 - ADT (m)

Day 2. Cycle 2 pass 15:

Introduction

Absolute geostrophic velocity (m/s)

Day 2. Cycle 2 pass 15:

Introduction

Relative vorticity (normalized by f)

Pass 15 ADT spectra: (117 cycles temporal mean)

• Pass 15 ADT spectra: (117 cycles temporal mean)

Filtering: Laplacian diffusion

Introduction

 Low-pass filtering method which as a smoothing PDE uses the heat equation:

$$\partial_t u(t,x) - \triangle u(t,x) = 0 \iff \partial_t u = \frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2}$$

- Isotropic method (acts equally in all directions)
- 2 cut-off wavelengths:
 - 30 km
 - 60 km

- Filtering
 - Cut-off wavelength of about 30 km:

- Filtering
 - Cut-off wavelength of about 30 km:

Absolute geostrophic velocity (m/s)

- Filtering
 - Cut-off wavelength of about 30 km:

Relative vorticity (normalized by f)

- Filtering
 - Cut-off wavelength of about 60 km:

- Filtering
 - Cut-off wavelength of about 60 km:

Absolute geostrophic velocity (m/s)

- Filtering
 - Cut-off wavelength of about 60 km:

Relative vorticity (normalized by f)

- Higher spatial coverage
- → Pseudo-SWOT data allows the observation of mesoscale structures.

- Noise
 too high for deriving variables (vel., vorticity)
- , but big improvement after filtering
- SWOT simulated data:

Resolves $\lambda s > 60$ km.

→ Significant improvement compared to standard altimeter gridded fields:

Resolve $\lambda s > 150-200$ km.

New simulations:

New version of simulator

→ Fast-sampling phase:

Cal/val region where experiments will be done under the PRE-SWOT project (P.I. Ananda Pascual)

- OGCM 1/60°
- Other filtering methods

Acknowledgements

- Ananda Pascual, my supervisor at IMEDEA
- Evan Mason for all his help during this internship
- Ronan Fablet for his help with the Seabird data and the filtering of the SWOT data
- Baptiste Mourre for his help with the WMOP data
- Antonio Sánchez Román for his help with the CMEMS data
- Lucile Gaultier for her help with the simulator
- Simón Ruiz and Jacques Verron for their insight during this project
- Daniel Oro and Pep Arcos for the Seabird data
- Jose Da Silva, Fabrice Collard and Aurelien Ponte for their help with internal waves
- My office colleagues
- SOCIB and ERASMUS+ for funding this project

Thank you very much for your attention

References

- Fu, L.L. and Ubelmann, C., 2013. On the Transition from Profile Altimeter to Swath Altimeter for Observing Global Ocean Surface Topography.
- Fu, L. L. and Morrow, R. A next generation altimeter for mapping thesea surface variability: opportunities and challenges. In In the 48th Liege Colloquium-Submesoscale Processes: mechanisms, Implications and New Frontiers, Liege, Belgium, May 23-27 2016. Presentation.
- Gaultier, L., & Ubelmann, C. (2015). SWOT Simulator Documentation. Tech. Rep.
 1.0. 0, Jet 422 Propulsion Laboratory, California Institute of Technology. 423.
- Juza M., Mourre B., Renault L., Gómara S. ... & J.Tintoré (2016). SOCIB
 operational forecasting system and multi-platform validation in the Western
 Mediterranean Sea. Journal of Operational Oceanography.
- Lee, H., Biancamaria, S., Alsdorf, D. E., Andreadis, K. M., Clark, E. A., Durand, M., Jung, H. C., Lettenmaier, D. P., Mognard, N. M., Rodriguez, E., Sheng, Y. and Shum, C. K. Capability of SWOT to measure surface water storage change. In Towards high-resolution of oceans dynamics and terrestrial water from space meeting, Lisbon, Portugal, October 2010.
- Rodríguez, E. The Surface Water and Ocean Topography (SWOT) Mission. In OSTST, Lisbon, October 2010.
- Ubelmann, C., Klein, P. and Fu L.L., 2015. Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping. Journal of Atmospheric and Oceanic Technology, 32, 177-184.