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What is DIVA?

« DIVA: Data Interpolating Variational
Analysis

» Objective: derive a gridded climatology
from in situ observations

e The variational inverse methods aim to
derive a continuous field which is:

o close to the observations (it should
not necessarily pass through all
observations because observations
have errors)

o "smooth"

e Formalized via a cost function:
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where d; are the measurements at the location X; and their weights y;, ¢

is a background estimate of the field.
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Properties

» decouples basins based on topography

e can take ocean currents into account

e can detect trends in your data

e can detect and remove outliers

e consistent error variance estimation

o Former version of DIVA: analysis operates in 2 dimensions
e The rewrite DIVAnd does not have this limitation

Salinity [psu] @ Depth [m]=1000 Salinity [psu] @ Depth [m]=1000
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DIVA and surface currents

« DIVA applied to 1.0 - S —
currents
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DIVA and surface currents

l|l* = /(anch : VVp + a1V - Vo + agp®) dx
Q

2 2 A (u; - p; — ur;)?
J) = ||lul|” + |Iv|I* + Z, 5
i1

€;

u = (u,v) and p, is the normalized vector pointing toward the correspond HF
radar site of the i-th radial observation u,;
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Coastline

e Coastline as a
boundary condition

e Constrain at the
boundaries 0€2

u-n=90

e Cost functions
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Horizontal divergence

e Low horizontal 1.0 — —

divergence of TR A B f
currents
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Time dimension

Either 2D analysis (longitude, latitude) or 3D analysis (longitude, latitude
and time)
3D analysis:
o Include the data the hour before and after
o Temporal correlation length
o Coriolis force
Coriolis force and geostrophically balanced mean flow

ou on
o T8
ov on
o fu ga_y

Extend to cost function to include also the surface elevation 7
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Cross-validation

« HF Radar data from
SOCIB (October
2014)

e In 30 current maps
with the best
coverage we marked
some data points as
missing (for each
radar sites).

» These data points
are not used in the
following and used
to validate the
results
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2D Analysis

« Every snapshot is reconstructed individually

2014-10-03T03:00:00 Radial currents FORM Radial currents GALF
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3D Analysis

e Including Coriolis force and geostrophically balanced mean flow

2014-10-03T03:00:00 Radial currents FORM Radial currents GALF
T 392
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Skill score

Skill score S for case C computed as :

MSE(C)

S(C)=1- ———
MSE(2D)

The 2D case is the base-line for computing the relative improvement
MSE(C) is the mean square error (relative to the cross-validation dataset)
for the case C.

If S = 0, the reconstruction is as "good/bad" as the base-line

If S = 1, the reconstruction is matches perfectly the validation dataset.
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Comparison

Case
2D

2D bc
2D_div

3D
3D _Coriolis

3D_Coriolis_geo

Description

classical 2D-analysis (longitude,
latitude)

as 2D, but with boundary conditions

as 2D, but imposing small horizontal
divergence

3D-analysis (longitude, latitude, time)
3D-analysis with the Coriolis force

3D-analysis with the Coriolis force and
the surface pressure gradient

RMS

0.0652

0.0652

0.0650

0.0575
0.0537

0.0484

Skill

0.000

-0.000

0.006

0.222
0.321

0.450
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Statistics

« Mean current 39'2_\\\\),%";'2;'{

 Ellipse representing the \ \ \ \ \ \ Y f \
standard deviation 39.0 - -

« Standard deviation is \ \ \ \ \ \ M 1 —
scaled down by a factor . \\\\\\ P,
of 5 to enhance visibility ' \ \ \ \ \ N Py

« Variability is quite large \ \ e v
compared to the mean 38.6 1 \ W =
current “ wwTA

» The vectors outside the 38.4 | PRSP
area covered by both ' \ Py
antennas are of course \ AR v
much less reliable 38.2 1

« Stung current just in : : : : : :
front of Puig des Galfi 025 050 075 1.00 125 1.50
(GALF)

e Only one current vector
is shows for every 3x3 grid cells
e Red arrow represents 0.1 m/s
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EOF Spectrum

» Variance of the
different EOF
relative to the total
variance

» Velocity EOFs
spectra tends to be 291
flatter than spectra
derived from e.g.
sea surface
temperature

Relative variance of each EOF mode (in percent)
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EOFs

e Inan
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which are
interesting

e EOF 1: Relatively uniform motion still affected by the presence of the
coastline

e Gyre-like structure in front of Formentera (5-EOF)
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Conclusions

« DIVA framework was extended to handle surface currents and able to
handle observations when only one component of the velocity vector is
measured.

« 2D analyses were used as a base-line for different test cases.

e Including boundary conditions and the constrain on small divergence did
not improve the accuracy of the constructions.

« However, taking for every time instance the previous and the following
radial maps into account (i.e. a 3D analysis), the skill score could be
improved.

« Every time additional dynamical information was added in the analysis
the skill score was improved.

« Dynamical information appears to be highly beneficial when analyzing
surface currents.

17 /22



Decoupling in 1D

» First 1D, green: land points, everything else: sea point
« Weights of the discretized Laplacian (in finite difference)

V2 = i
ox?

« Laplacian cannot be computed at the land boundary

 If 3 consecutive (sea) values are equal $\rightarrow$ Laplacian =0

« Laplacian constrain (and the gradient constrain) forces that every values
is close to its right and left neighbor

« This constrain is effective everywhere except near the boundary

» The Laplacian couples directly every grid point with its two neighbors,

 Indirect coupling: two grid points that are separated by some distance as
long as they are not separated by land

e The result is that value of the analysis at the two blue points must be close
to each other

« However, this is not the case of the blue points and the red point
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DIVA updates

We rewritten DIVA in Julia (divand.jl)

o Curvilinear orthogonal grids

o Ability to work in n-dimensions
Julia: good trade-off between efficiency of a compiled language and
flexibility of a dynamic language
Facilitate the installation:

o Use Jupyter notebooks fully configured environment for divand.jl

o Docker container allows one to easily replicate these environments
Continue to maintain the Fortran version of DIVA for ODV
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@\ Matiab € Python

Modern
programming
Linear concepts
Algebra Data frames

Y
(U
julia
+ Compilation to machine code
+ Performance approaching C
+ Multiple dispatch

+ Type system
+ Lisp-like macros and Metaprogramming
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Advection constrain

e The information in the
observation can be spread
preferentially following
currents

Jo(h) = / (v- V¢)*dD
D

where v is a vector field.

Covariance (without advection)
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— 0.1 m/s

Mean currents
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