The CMEMS Sea Level Component & MedSUB Service Evolution Project

Ananda Pascual, Antonio Sánchez-Román, Simón Ruiz

IMEDEA(CSIC-UIB), Esporles (Mallorca)

Outline

- 1. Motivation
- 2. Objectives
- 3. The Sea Level Component
- 4. MedSUB SE project
- 5. Future prospects

Satellite altimetry has revolutionized our view of ocean circulation

Need of integrated ocean observations

...to resolve a wide range of spatial and temporal scales that characterize ocean processes

Artificial Intelligence

Objectives

Science: To characterize, understand and predict ocean processes (from coast to open ocean) that interact at a wide range of spatial and temporal scales

FOCUS: Meso- and submesoscale

Technical: Cal/Val, assessment

FOCUS: Altimetry vs in situ & model

Research for operational oceanography

http://marine.copernicus.eu/

The Sea Level component: Data quality assessment of altimetry products

10 years of altimetry assessment

2012-2014

SEA LEVEL THEMATIC ASSEMBLY CENTER

2014-2015

2015-2018

Data Unification and Altimeter Combination System

Sea Level & Geostrophic current Anomaly **Absolute Dynamic Topography &** Geostrophic current

Mean Dynamic Topography & Geostrophic

current

Associated errors

Finite Size Lyapounov **Exponent** Mesoscale Eddy Atlas Trajectory Ocean Monitoring Index

- NRT and offline production lines.
- Operational L3/L4 products available on CMEMS
- L3 product ingested in Global (Mercator) as well and regional model (European seas)
- R&D Demonstration products and L4p available on Aviso
- In collaboration with

More info on www.duacs.cls.fr

CMEMS altimetry assessment

Example: multi-platform experiment (ship, glider) during **commisioning phase - Sentinel-3A (ESA)**.

Decrease in percentage error between SARM and P-LRM product.
Heslop et al. GRL (2017)

- More than 50 publications on altimetry
- Including comparison vs HF radar, SST, OC, numerical models

Innovative ocean observations to validate satellite derived surface currents

www.nature.com/scientificreports

OPEN Rafting behaviour of seabirds as a proxy to describe surface ocean currents in the Balearic Sea

Received: 7 June 2018 Accepted: 28 November 2018 Published online: 10 January 2019

A. Sánchez-Román¹, L. Gómez-Navarro^{1,2}, R. Fablet³, D. Oro¹, E. Mason⁰, J. M. Arcos⁵, S. Ruiz 1 & A. Pascual 1

CMEMS altimetry assessment (tide gauges)

- CMEMS tide gauge database preparation
- Implementation of specific metrics for the comparison of in situ tide gauge data and altimetric measurements

CMEMS NRT TIDE GAUGE products from:

www.marineinsitu.eu

ONGOING WORK

Application: Cruise planning support

Sea surface height and surface currents derived from altimetry in the Alboran Sea in support of Calypso (onboard Pourquoi Pas?) cruise planning.

Understanding meso and submesoscale ocean interactions to improve Mediterranean CMEMS products (SE project MedSUB)

Assessing CMEMS models with in situ data (drifters)

GLOBAL-MFC feedback:

New GLOBAL system (October 2016) - impact of assimilation of new MDT Drifters trajectories from AlborEx experiment (Pascual et al. 2017)

A new approach to assess the mesoscale content of CMEMS model

New approach to characterize and assess the mesoscale content of the models based on a automated eddy tracker tool*.

*Mason, E., A. Pascual, and J. McWilliams, 2014: A New Sea Surface Height Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-14-00019.1

Py-eddy-tracker and 3D composites using CMEMS (GLO, MFS, IBI) models

R&D transfer to CMEMS:

https://bitbuc ket.org/emas on/py-eddytracker

Future prospects

Surface Water Ocean Topography mission

Wide-swath altimeter

- Launch: 2021
- Provide water elevation maps
 - Oceanography
 - Hydrology

SWOT

(Fu and Ubelmann, 2013)

HOME SCIENCE MEETINGS

SWOT Science Team

MULTI-SUB: Mesoscale and sub-mesoscale vertical exchanges from multi-platform experiments and modeling simulations: anticipating SWOT launch

PI: Ananda Pascual

Co-Is: S. Ruiz, E. Mason, A. Orfila, C. Troupin, B. Mourre, B.

Casas, R. Escudier, M. Juza, M. Torner, J. Tintoré

Future prospects

Big data, cloud computing (e.g. DIAS), artificial intelligence, data-driven and machine and deep learning.

